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Neural Networks with Memory
- Neural Turing Machine (NTM) (arXiv 2074)

Central Processing Unit
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Memory Unit

Von Neumann Architecture
1. Load program and data from memory unit

2. Perform arithmetic and logical operations

3. Store results back into memory unit

https://en.wikipedia.org/wiki/\lon_Neumann_architecture



Neural Networks with Memory
- Neural Turing Machine (NTM) (arXiv 2074)
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Memory Unit

Three fundamental mechanisms of computer programs:
1. Elementary operations (e.g. arithmetic operations)

2. Logical flow control (branching)

3. External memory

https://en.wikipedia.org/wiki/\lon_Neumann_architecture



Neural Networks with Memory
- Neural Turing Machine (NTM) (arXiv 2074)
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N e u ra I N etwo rks Wit h M e m O ry External Input External Output
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Neural Networks with Memory

- Neural Turing Machine (NTM) (arXiv 2074)
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Neural Networks with Memory
- Neural Turing Machine (NTM) (arXiv 2074)
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Neural Networks with Memory
- Neural Turing Machine (NTM) (arXiv 2074)
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Neural Networks with Memory
- Neural Turing Machine (NTM) (arXiv 2074)
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Neural Networks with Memory
- Neural Episodic Control (NEC) (ICML 2017)

A DQN agent consisted of:

1. Differentiable Neural Dictionary (DND):
A key-value based memory module M, = (K, V)

2. A CNN that processes pixel images s

3. A final network that converts memory read-outs to Q(s, a) values



Neural Networks with Memory
- Neural Episodic Control (NEC) (ICML 2017)

Reading from memory

Nearest Neighbors
1. top p( = 50) w; = k(h, hi)/ Y k(h, h;)
2. approximate 7



Neural Networks with Memory
- Neural Episodic Control (NEC) (ICML 2017)

Writing to memory

> update

O AE\:JI y append




Neural Networks with Memory
- Neural Episodic Control (NEC) (ICML 2017)

Algorithm 1 Neural Episodic Control

D: replay memory.
M . a DND for each action a.
N': horizon for N-step () estimate.
for each episode do
fort=1,2,...,T do
Receilve observation s; from environment with em-
bedding h.
Read from memory | Estimate Q(s¢, a) for each action a via (1) from M,
a; < e-greedy policy based on Q(s;, a)
Take action a;, receive reward 74 1
Write to memory | Append (h, Q™) (s;,a;)) to M,,.  « N-step Q-learning
Append (s, a;, Q™) (54, a:)) to D.
Train on a random minibatch from D.
end for
end for

CNN




Memory + Meta-Learning
- One-Shot Learning with Memory-Augmented Neural Networks (arXiv 2016)

NNs with large memory are known to be quite capable of meta-learning.
However, RNNs are not scalable enough.

Further requirements?

1. Stores information in memory in a representation that is
both stable and element-wise addressable.

2. The number of parameters should not be tied with
the size of the memory.
= Memory-Augmented Neural Networks (MANN)
e.g. NTM (Graves et al.), Memory Networks (\Weston et al.)

ttttttttttttttttttttttttttt

000000000

MMMMMM



Memory + Meta-Learning
- One-Shot Learning with Memory-Augmented Neural Networks (arXiv 2016)

Setup
Class Prediction
—p P —p coo —P| |- ® ..... > N 2 —P> coe

bl
f f Shuffle: f

(X6 Y1) (Xe15Y1) Labels (x1,0) (x2,2)

| | Classes

NTM Episode Samples

Task/Episode D = {(x,, yt)}tT=1
Optimization  6* = argmin, [EDNp(D) [L(D; (9)]

Training input  (Xy, null), (X, ¥o), ***» X7 Y7 1)



Memory + Meta-Learning
- One-Shot Learning with Memory-Augmented Neural Networks (arXiv 2016)
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Memory + Meta-Learning
- One-Shot Learning with Memory-Augmented Neural Networks (arXiv 2016)
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Memory + Meta-Learning
- One-Shot Learning with Memory-Augmented Neural Networks (arXiv 2016)

Experiments

5-way classification
MANN o
LSTM 2

1.0

0.8

0.6

0.4

0.2 jie

0.0

1.0

0.8

0.6

0.4

1st 2nd 5th 10th
® Instance Instance Instance Instance
ﬁym J'(ﬁ}rrp <mm( ,4*» 1,*‘“’ Wﬂvuhm {(t
.—‘F'ﬁp~§nughﬁﬂuﬁﬂiﬁufﬁ
f -‘-"\a
:'T ~.
o o
o
0®
® ™Y ° o
W o W [T o[ PR
R g ° ’
i S,
1 [ ] (
0 20000 40000 60000 80000 100000
PRUDIRSES S
wo omy© i ‘7\{ ' oo o’ ‘
( e - P .
Lo =g ‘ \~;ﬂ\¢f
"(:;“4‘1‘,‘ ’ﬁk ° .v’.%. .H...V
{Qﬁ;p Jﬁf"
A o (DS ‘.
Vgt s < ~.~'~.M.-°.. ALY S ey e o

0.2k

0.0

0 20000

40000 60000

Episode

80000 100000

+ Iintelligent guesses!



Memory + Meta-Learning
- Been There, Done That: Meta-Learning with Episodic Recall (ICML 2018)

Meta-learning agents are good at rapidly learning new tasks.

However, they forget previously learned tasks.

In naturalistic environments, learners are confronted with
1. an open-ended series of related yet novel tasks, within which
2. previously encountered tasks identifiably reoccur.

Sample uniformly without replacement from from a bag of tasks
S — {tl’ t2’ e, tlSl}
that contains duplicates of each task.

Each task is consisted of MDPs m and context c. That is, 1, = (m,, c,).



Memory + Meta-Learning
- Been There, Done That: Meta-Learning with Episodic Recall (ICML 2018)

How do we reinstate
LSTM-based agent (from L2RL) the retrieved cell state?
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Memory + Meta-Learning
- Been There, Done That: Meta-Learning with Episodic Recall (ICML 2018)

Episodic LSTM

key value key value

tanh

DND, i | DND,

Reinstatement Gate



Memory + Meta-Learning
- Been There, Done That: Meta-Learning with Episodic Recall (ICML 2018)

Experiments
Using Omniglot characters as contexts

Each time a task reoccurs, a different drawing of the character shown to the agent!
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Memory + Meta-Learning
- Rapid Adaptation with Conditionally Shifted Neurons (ICML 2018)

Can we shift neuron activation values based on the current task?
= Conditionally Shifted Neurons (CSN)

Description Phase
1. Process D_ and extracts conditioning information.
2. Generate activation shifts and stores them in a key-value memory.

Prediction Phase
1. Retrieve shifts from memory and applies them to the neurons.
2. Produces predictions for unseen datapoints.



Memory + Meta-Learning
- Rapid Adaptation with Conditionally Shifted Neurons (ICML 2018)

Conditionally Shifted Neurons (CSN)

for simple feed-forward networks

h { (at) + U(ﬁt) t 75 T non-output layers
t J—

softmax(a; + B;) t= output layer
pre-activation vector conditional shift vector

ar = Wihi_1 + by



Memory + Meta-Learning
- Rapid Adaptation with Conditionally Shifted Neurons (ICML 2018)

Procedure
Description Phase Prediction Phase
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Memory + Meta-Learning
- Rapid Adaptation with Conditionally Shifted Neurons (ICML 2018)

Compute keys

ki = f(x})
where f( - ) is an MLP

Compute values
V= g(lt,l-)
where g( - ) is an MLP

Compute conditioning
information vector

It,i — Ul(at) ‘ (5\’1’ — yi,)

Compute loss

Description Phase (1) Extract conditioning vectors and (2) store them in memory
Memory 1
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<— Training inputs



Memory + Meta-Learning
- Rapid Adaptation with Conditionally Shifted Neurons (ICML 2018)

CSN can be applied pretty easily to ResNets, CNNs, and LSTMSs.

SOTA performance on Mini-lmageNet 5-way classification at its time!



Memory + Meta-Learning
- Meta-Learning Neural Bloom Filters (ICML 2019)

Bloom Filters: answers set membership queries
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Memory + Meta-Learning
- Meta-Learning Neural Bloom Filters (ICML 2079)

Replacing algorithms with neural networks
1. those that are configured by heuristics
2. those that do not take advantage of the data distribution



Memory + Meta-Learning
- Meta-Learning Neural Bloom Filters (ICML 2079)

Neural Bloom Filter
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Memory + Meta-Learning
- Meta-Learning Neural Bloom Filters (ICML 2079)

Neural Bloom Filter
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Encoder network
- 3-layer CNN for images
- 128-hidden unit LSTM for text
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Memory + Meta-Learning
- Meta-Learning Neural Bloom Filters (ICML 2079)

Neural Bloom Filter
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Memory + Meta-Learning
- Meta-Learning Neural Bloom Filters (ICML 2079)

Neural Bloom Filter Address over memory M
a = softmax(q’ A)
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Memory + Meta-Learning
- Meta-Learning Neural Bloom Filters (ICML 2079)

Neural Bloom Filter Writing to memory
Mt+1 — MZ + WCZT
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Memory + Meta-Learning
- Meta-Learning Neural Bloom Filters (ICML 2079)

Only additive write: parallelizable!
Neural Bloom Filter Writing to memory
MH—I — MZ ~+ WCZT
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Memory + Meta-Learning
- Meta-Learning Neural Bloom Filters (ICML 2079)

Neural Bloom Filter Reading from memory
r=MQ®a
4 M
r >[||][|_>q—>—>a%[;iﬂ—;
X —> — z
i S L

.

— |l — -

N 8%

Y— Y T




Memory + Meta-Learning
- Meta-Learning Neural Bloom Filters (ICML 2079)

Neural Bloom Filter
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- 3-layer MLP



Memory + Meta-Learning
- Meta-Learning Neural Bloom Filters (ICML 2079)

Algorithm 2 Meta-Learning Training

Let St"%" denote the distribution over sets to store.
Let Q"™ denote the distribution over queries.
for : = 1 to max train steps do

Sample task:
Support Set | Sample set to store: S ~ Stratn
Query Set | Sample ¢ queries: z1, ...,z ~ QMW"

Targets: y; = 1ifx; € Selse0; j=1,...,¢
One-Shot Learning | Write entries to memory: M < f’“’”te( )
Calculate logits: 0; = f3¢%4(M,xz;); j=1,...,t
XE loss: L = Z;zl y;logo; + (1 —1y;)(1 —logo;)
Backprop through queries and writes: dL/df
Update parameters: ;1 < Optimizer(6;,dL/d0)
end for

Learning to Learn
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Summary
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