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CONTEXT The server helps an edge device perform DNN inference on videos
PROBLEM Significant network traffic incurred by naïve computation offloading
THROUGH Knowledge distillation across the network
NOVELTY Distributed partial KD, Key frame selection, Analytic modelling
EFFECTS 95% reduction in network data transfer, 3x throughput

In a Nutshell
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Outline

1. Introduction
• Mobile DNN inference and two major approaches
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• Temporal coherence in videos

3. Background
• Knowledge distillation
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• High-level overview
• Proposed algorithms
• Analytic models

5. Evaluation
• Setup and implementation
• Experimental results

6. Conclusion
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Introduction

https://ai.googleblog.com/2020/04/udepth-real-time-3d-depth-sensing-on.html (left)
https://ai.googleblog.com/2020/03/real-time-3d-object-detection-on-mobile.html (right)
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Two major approaches to mobile DNN inference
Architecting on-device models, devising efficient operations
Computation offloading to cloud/edge servers

Both have advantages
On-device: No server workload. Data is kept private.
Offloading: Large but high-quality models can be employed. 

But not without limitations
On-device: Model is less accurate and tailored to specific devices. No adaptation to context.
Offloading: High network traffic and server load. The mobile device does nothing.

Introduction
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When it comes to video data, offloading fails hard
Frame-by-frame communication overhead
Directly affected by adverse network conditions
Results in lag in inference result, and fluctuations in FPS

Video frames bear temporal coherence
Frames nearby share object, movement speed, ambience, etc
If we can do well on one frame, doing well on nearby frames is free

Motivation
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Can we enjoy the best of both worlds?
Little network traffic and server load
The performance and generality of a large model
Model adaptation to current data
Computation power of mobile devices is reasonably leveraged

Motivation
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Knowledge Distillation

Background
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A high-level overview

ShadowTutor
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Student training (Alg. 1)
Thresholded early stopping with maximum number of optimization steps

Key Frame Striding (Alg. 2)
Determines the distance to the next key frame based on the current stride and student metric
Longer stride if student performs well, shorter stride otherwise.

Server loop (Alg. 3) 
Partial knowledge distillation: Only update the backend parameters.

Client loop (Alg. 4)
Asynchronous inference: Do not wait until the updated parameters arrive.

ShadowTutor – Proposed Algorithms
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Accurate analytical models for throughput and network traffic
Aids the configuration of system parameters for the service provider

ShadowTutor – Analytic Models
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Table 1: Notations used for ShadowTutor. Those in the �rst
block are identi�ed after system execution, and the second
based on system component decisions.

Symbol De�nition

= number of frames processed
3 number of distillation steps taken
: number of key frames

CB8 latency of student inference
CB3 latency of one student distillation step
CC8 latency of teacher inference
C=4C network latency associated with one key frame
B=4C networked data size associated with one key frame

to perform asynchronous inference for at most MIN_STRIDE many
frames after a key frame. However, a mobile device may either be
able to execute student inference and network operations entirely in
parallel, or it may not support any form of concurrency. Therefore,
C2 , the execution time of MIN_STRIDE frames after a key frame, is
within the following bounds:

C2 � max(MIN_STRIDE ⇥ CB8 , C=4C + CC8 )
C2  MIN_STRIDE ⇥ CB8 + C=4C + CC8

(2)

Then, with C2 , the total execution time for processing = frames can
be modelled as follows:

CC>C = (= � : ⇥ MIN_STRIDE)CB8 + 3CB3 + :C2 . (3)

Now, we obtain a general formula for network tra�c by dividing
the total size of data transfer by the total execution time:

:B=4C
CC>C

=
:B=4C

(= � : ⇥ MIN_STRIDE)CB8 + 3CB3 + :C2
. (4)

Minimum network tra�c is achieved when key frames are least
frequent, the execution time for each key frame is longest, and the
client completely lacks concurrency. That is,

: =
=

MAX_STRIDE
, (5)

3 = : ⇥ MAX_UPDATES, (6)
and

C2 = MIN_STRIDE ⇥ CB8 + C=4C + CC8 (7)
hold. Thus, from equation 4, the network tra�c lower bound is:

B=4C
MAX_STRIDE ⇥ CB8 + MAX_UPDATES ⇥ CB3 + CC8 + C=4C

. (8)

On the other hand, network tra�c is maximum when key frames
are as frequent as possible, the execution time for each key frame
is shortest, and the client is capable of handling student inference
and network operations entirely in parallel. That is,

: =
=

MIN_STRIDE
, (9)

3 = 0, (10)
and

C2 = max(MIN_STRIDE ⇥ CB8 , C=4C + CC8 ) (11)
hold. Especially, equation 10 holds because distillation can be en-
tirely skipped based on the student’s initial metric (see line 4 in

algorithm 1). Again, from equation 4, the network tra�c upper
bound is:

B=4C
max(MIN_STRIDE ⇥ CB8 , C=4C + CC8 )

. (12)

We can also obtain a general formula for throughput by dividing
the number of processed frames by the execution time:

=

CC>C
=

=

(= � : ⇥ MIN_STRIDE)CB8 + 3CB3 + :C2
. (13)

The throughput lower bound is achieved when the total execu-
tion time is the longest. In such case, equations 9, 6, and 7 hold.
Thus, from equation 13, the throughput lower bound is

MIN_STRIDE

MIN_STRIDE ⇥ CB8 + MAX_UPDATES ⇥ CB3 + CC8 + C=4C
. (14)

On the other hand, the throughput upper bound is achieved when
the total execution time is the shortest. In that case, equations 5, 10,
and 11 hold. Again, from equation 13, the throughput upper bound
is

MAX_STRIDE

(MAX_STRIDE � MIN_STRIDE)CB8 +max(MIN_STRIDECB8 , C=4C + CC8 )
.

(15)
Notice that in all lower and upper bound formulae, only algo-

rithm parameters, latency measurements, and data size remain.
Thus, ShadowTutor allows the estimation of the system’s network
bandwidth requirement and throughput prior to actually imple-
menting and running the entire system. We use these bounds to
determine algorithm parameters in section 5.3.

5 SHADOWTUTOR FOR VIDEO SEMANTIC
SEGMENTATION

5.1 Experiment setup
As the server, we use a desktop computer equipped with an AMD
Ryzen 7 3700X CPU, one NVIDIA RTX 2080ti GPU, and 32 GB
memory. As the client, we use the NVIDIA Jetson Nano embedded
board [21], equipped with a quad-core ARM A57 CPU, a 128-core
Maxwell GPU, and 4 GB memory. Jetson Nano can deliver up to
472 GFLOPS for 32-bit �oating points, which is not an unrealistic
number for modern mobile devices. For example, Google Pixel 4’s
Qualcomm Snapdragon 855 can deliver up to 954.7 GFLOPS (32-bit)
with its built-in Adreno 640 GPU [9]. As to network con�gurations,
we limit both uplink and downlink bandwidth to 80Mbps, assuming
strong Wi-Fi connection. We implement the system with OpenMPI
[10], PyTorch [23], and Detectron2 [30].

5.2 System Component Decisions
We target videos with 25–30 FPS from the Long Video Segmenta-
tion (LVS) dataset [20] 1. We use high resolution (720p HD) videos
in order to pressure the overall load of the system. The LVS dataset
is labeled with 8 actively moving object classes (person, bicycle,
automobile, bird, dog, horse, elephant, and gira�e), making accu-
rate segmentation challenging because no object class remains
stationary in the scene. The movement of the camera is either �xed,
moving, or egocentric (shot from a camera attached to a person’s
head or chest). Also, the main scenery of each video is one of the
three: animals, people, or street.
1Obtained from https://olimar.stanford.edu/hdd/lvsdataset/.

Throughput upper-bound

Throughput lower-bound

Network traffic upper-bound

Network traffic upper-bound
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Table 1: Notations used for ShadowTutor. Those in the �rst
block are identi�ed after system execution, and the second
based on system component decisions.

Symbol De�nition

= number of frames processed
3 number of distillation steps taken
: number of key frames

CB8 latency of student inference
CB3 latency of one student distillation step
CC8 latency of teacher inference
C=4C network latency associated with one key frame
B=4C networked data size associated with one key frame

to perform asynchronous inference for at most MIN_STRIDE many
frames after a key frame. However, a mobile device may either be
able to execute student inference and network operations entirely in
parallel, or it may not support any form of concurrency. Therefore,
C2 , the execution time of MIN_STRIDE frames after a key frame, is
within the following bounds:

C2 � max(MIN_STRIDE ⇥ CB8 , C=4C + CC8 )
C2  MIN_STRIDE ⇥ CB8 + C=4C + CC8

(2)

Then, with C2 , the total execution time for processing = frames can
be modelled as follows:

CC>C = (= � : ⇥ MIN_STRIDE)CB8 + 3CB3 + :C2 . (3)

Now, we obtain a general formula for network tra�c by dividing
the total size of data transfer by the total execution time:

:B=4C
CC>C

=
:B=4C

(= � : ⇥ MIN_STRIDE)CB8 + 3CB3 + :C2
. (4)

Minimum network tra�c is achieved when key frames are least
frequent, the execution time for each key frame is longest, and the
client completely lacks concurrency. That is,

: =
=

MAX_STRIDE
, (5)

3 = : ⇥ MAX_UPDATES, (6)
and

C2 = MIN_STRIDE ⇥ CB8 + C=4C + CC8 (7)
hold. Thus, from equation 4, the network tra�c lower bound is:

B=4C
MAX_STRIDE ⇥ CB8 + MAX_UPDATES ⇥ CB3 + CC8 + C=4C

. (8)

On the other hand, network tra�c is maximum when key frames
are as frequent as possible, the execution time for each key frame
is shortest, and the client is capable of handling student inference
and network operations entirely in parallel. That is,

: =
=

MIN_STRIDE
, (9)

3 = 0, (10)
and

C2 = max(MIN_STRIDE ⇥ CB8 , C=4C + CC8 ) (11)
hold. Especially, equation 10 holds because distillation can be en-
tirely skipped based on the student’s initial metric (see line 4 in

algorithm 1). Again, from equation 4, the network tra�c upper
bound is:

B=4C
max(MIN_STRIDE ⇥ CB8 , C=4C + CC8 )

. (12)

We can also obtain a general formula for throughput by dividing
the number of processed frames by the execution time:

=

CC>C
=

=

(= � : ⇥ MIN_STRIDE)CB8 + 3CB3 + :C2
. (13)

The throughput lower bound is achieved when the total execu-
tion time is the longest. In such case, equations 9, 6, and 7 hold.
Thus, from equation 13, the throughput lower bound is

MIN_STRIDE

MIN_STRIDE ⇥ CB8 + MAX_UPDATES ⇥ CB3 + CC8 + C=4C
. (14)

On the other hand, the throughput upper bound is achieved when
the total execution time is the shortest. In that case, equations 5, 10,
and 11 hold. Again, from equation 13, the throughput upper bound
is

MAX_STRIDE

(MAX_STRIDE � MIN_STRIDE)CB8 +max(MIN_STRIDECB8 , C=4C + CC8 )
.

(15)
Notice that in all lower and upper bound formulae, only algo-

rithm parameters, latency measurements, and data size remain.
Thus, ShadowTutor allows the estimation of the system’s network
bandwidth requirement and throughput prior to actually imple-
menting and running the entire system. We use these bounds to
determine algorithm parameters in section 5.3.

5 SHADOWTUTOR FOR VIDEO SEMANTIC
SEGMENTATION

5.1 Experiment setup
As the server, we use a desktop computer equipped with an AMD
Ryzen 7 3700X CPU, one NVIDIA RTX 2080ti GPU, and 32 GB
memory. As the client, we use the NVIDIA Jetson Nano embedded
board [21], equipped with a quad-core ARM A57 CPU, a 128-core
Maxwell GPU, and 4 GB memory. Jetson Nano can deliver up to
472 GFLOPS for 32-bit �oating points, which is not an unrealistic
number for modern mobile devices. For example, Google Pixel 4’s
Qualcomm Snapdragon 855 can deliver up to 954.7 GFLOPS (32-bit)
with its built-in Adreno 640 GPU [9]. As to network con�gurations,
we limit both uplink and downlink bandwidth to 80Mbps, assuming
strong Wi-Fi connection. We implement the system with OpenMPI
[10], PyTorch [23], and Detectron2 [30].

5.2 System Component Decisions
We target videos with 25–30 FPS from the Long Video Segmenta-
tion (LVS) dataset [20] 1. We use high resolution (720p HD) videos
in order to pressure the overall load of the system. The LVS dataset
is labeled with 8 actively moving object classes (person, bicycle,
automobile, bird, dog, horse, elephant, and gira�e), making accu-
rate segmentation challenging because no object class remains
stationary in the scene. The movement of the camera is either �xed,
moving, or egocentric (shot from a camera attached to a person’s
head or chest). Also, the main scenery of each video is one of the
three: animals, people, or street.
1Obtained from https://olimar.stanford.edu/hdd/lvsdataset/.
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:B=4C
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. (4)
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frequent, the execution time for each key frame is longest, and the
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: =
=

MAX_STRIDE
, (5)
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and
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. (8)

On the other hand, network tra�c is maximum when key frames
are as frequent as possible, the execution time for each key frame
is shortest, and the client is capable of handling student inference
and network operations entirely in parallel. That is,

: =
=

MIN_STRIDE
, (9)

3 = 0, (10)
and

C2 = max(MIN_STRIDE ⇥ CB8 , C=4C + CC8 ) (11)
hold. Especially, equation 10 holds because distillation can be en-
tirely skipped based on the student’s initial metric (see line 4 in

algorithm 1). Again, from equation 4, the network tra�c upper
bound is:

B=4C
max(MIN_STRIDE ⇥ CB8 , C=4C + CC8 )

. (12)

We can also obtain a general formula for throughput by dividing
the number of processed frames by the execution time:
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=

(= � : ⇥ MIN_STRIDE)CB8 + 3CB3 + :C2
. (13)

The throughput lower bound is achieved when the total execu-
tion time is the longest. In such case, equations 9, 6, and 7 hold.
Thus, from equation 13, the throughput lower bound is

MIN_STRIDE

MIN_STRIDE ⇥ CB8 + MAX_UPDATES ⇥ CB3 + CC8 + C=4C
. (14)

On the other hand, the throughput upper bound is achieved when
the total execution time is the shortest. In that case, equations 5, 10,
and 11 hold. Again, from equation 13, the throughput upper bound
is

MAX_STRIDE

(MAX_STRIDE � MIN_STRIDE)CB8 +max(MIN_STRIDECB8 , C=4C + CC8 )
.

(15)
Notice that in all lower and upper bound formulae, only algo-

rithm parameters, latency measurements, and data size remain.
Thus, ShadowTutor allows the estimation of the system’s network
bandwidth requirement and throughput prior to actually imple-
menting and running the entire system. We use these bounds to
determine algorithm parameters in section 5.3.

5 SHADOWTUTOR FOR VIDEO SEMANTIC
SEGMENTATION

5.1 Experiment setup
As the server, we use a desktop computer equipped with an AMD
Ryzen 7 3700X CPU, one NVIDIA RTX 2080ti GPU, and 32 GB
memory. As the client, we use the NVIDIA Jetson Nano embedded
board [21], equipped with a quad-core ARM A57 CPU, a 128-core
Maxwell GPU, and 4 GB memory. Jetson Nano can deliver up to
472 GFLOPS for 32-bit �oating points, which is not an unrealistic
number for modern mobile devices. For example, Google Pixel 4’s
Qualcomm Snapdragon 855 can deliver up to 954.7 GFLOPS (32-bit)
with its built-in Adreno 640 GPU [9]. As to network con�gurations,
we limit both uplink and downlink bandwidth to 80Mbps, assuming
strong Wi-Fi connection. We implement the system with OpenMPI
[10], PyTorch [23], and Detectron2 [30].

5.2 System Component Decisions
We target videos with 25–30 FPS from the Long Video Segmenta-
tion (LVS) dataset [20] 1. We use high resolution (720p HD) videos
in order to pressure the overall load of the system. The LVS dataset
is labeled with 8 actively moving object classes (person, bicycle,
automobile, bird, dog, horse, elephant, and gira�e), making accu-
rate segmentation challenging because no object class remains
stationary in the scene. The movement of the camera is either �xed,
moving, or egocentric (shot from a camera attached to a person’s
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frames after a key frame. However, a mobile device may either be
able to execute student inference and network operations entirely in
parallel, or it may not support any form of concurrency. Therefore,
C2 , the execution time of MIN_STRIDE frames after a key frame, is
within the following bounds:
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(2)
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be modelled as follows:
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=
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, (5)
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and
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3 = 0, (10)
and
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hold. Especially, equation 10 holds because distillation can be en-
tirely skipped based on the student’s initial metric (see line 4 in

algorithm 1). Again, from equation 4, the network tra�c upper
bound is:
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. (12)

We can also obtain a general formula for throughput by dividing
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The throughput lower bound is achieved when the total execu-
tion time is the longest. In such case, equations 9, 6, and 7 hold.
Thus, from equation 13, the throughput lower bound is
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MIN_STRIDE ⇥ CB8 + MAX_UPDATES ⇥ CB3 + CC8 + C=4C
. (14)

On the other hand, the throughput upper bound is achieved when
the total execution time is the shortest. In that case, equations 5, 10,
and 11 hold. Again, from equation 13, the throughput upper bound
is
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rithm parameters, latency measurements, and data size remain.
Thus, ShadowTutor allows the estimation of the system’s network
bandwidth requirement and throughput prior to actually imple-
menting and running the entire system. We use these bounds to
determine algorithm parameters in section 5.3.
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SEGMENTATION

5.1 Experiment setup
As the server, we use a desktop computer equipped with an AMD
Ryzen 7 3700X CPU, one NVIDIA RTX 2080ti GPU, and 32 GB
memory. As the client, we use the NVIDIA Jetson Nano embedded
board [21], equipped with a quad-core ARM A57 CPU, a 128-core
Maxwell GPU, and 4 GB memory. Jetson Nano can deliver up to
472 GFLOPS for 32-bit �oating points, which is not an unrealistic
number for modern mobile devices. For example, Google Pixel 4’s
Qualcomm Snapdragon 855 can deliver up to 954.7 GFLOPS (32-bit)
with its built-in Adreno 640 GPU [9]. As to network con�gurations,
we limit both uplink and downlink bandwidth to 80Mbps, assuming
strong Wi-Fi connection. We implement the system with OpenMPI
[10], PyTorch [23], and Detectron2 [30].

5.2 System Component Decisions
We target videos with 25–30 FPS from the Long Video Segmenta-
tion (LVS) dataset [20] 1. We use high resolution (720p HD) videos
in order to pressure the overall load of the system. The LVS dataset
is labeled with 8 actively moving object classes (person, bicycle,
automobile, bird, dog, horse, elephant, and gira�e), making accu-
rate segmentation challenging because no object class remains
stationary in the scene. The movement of the camera is either �xed,
moving, or egocentric (shot from a camera attached to a person’s
head or chest). Also, the main scenery of each video is one of the
three: animals, people, or street.
1Obtained from https://olimar.stanford.edu/hdd/lvsdataset/.
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Setup
The server has a powerful GPU (NVIDIA RTX2080ti)
The client has a weak GPU (NVIDIA Jetson Nano), comparable to recent mobile devices
Network bandwidth limited to 80Mbps
Semantic segmentation on HD 25fps videos (LVS dataset)

Implementation
OpenMPI + PyTorch + Detectron2
Code open at Github: https://github.com/jaywonchung/ShadowTutor

Evaluation

https://github.com/jaywonchung/ShadowTutor
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Experimental results

Evaluation
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Table 2: Execution time and mean number of distillation
steps

Distillation Partial Full

One step (ms) 13 18
Mean # of steps 3.83 4.44

Table 3: Frames processed per second (FPS) and execution
time (s) in parenthesis

Camera Scene Partial Full Naive

�xed animals 6.55(762.5) 6.21(804.5) 2.09(2391.3)
�xed people 6.60(757.4) 6.43(777.0) 2.09(2391.3)
�xed street 6.50(768.8) 5.95(840.5) 2.09(2391.3)
moving animals 6.57(760.5) 6.27(796.5) 2.09(2391.3)
moving people 6.59(758.5) 6.36(785.8) 2.09(2391.3)
moving street 6.41(780.2) 5.55(901.0) 2.09(2391.3)
egocentric people 6.57(760.5) 5.89(848.5) 2.09(2391.3)

average 6.54(764.1) 6.08(822.0) 2.09(2391.3)

Table 4: Data transmitted on each key frame (MB).

Direction Partial Full Naive

To Server 2.637 2.637 2.637
To Client 0.395 1.846 0.879

Total 3.032 4.483 3.516

training steps is limited, it is quicker to exploit a �xed distribution
of features than to explore for better ones.

Table 3 lists the actual throughput of the system (frames pro-
cessed per second) and the total execution time. As expected, partial
distillation outperforms full distillation in every category. Moreover,
ShadowTutor shows an improvement greater than 3x over naive
o�oading. This is especially because ShadowTutor only communi-
cates with the server on key frames, and thus drastically reduces
the latency for networking.

6.2 Network Tra�c
We investigate the reduction of network tra�c in terms of the
amount of data transfer per key frame and the ratio of key frames
to all frames.

Table 4 shows the amount of data transfer (in MB) per key frame.
Since it su�ces to send only the updated part of the student, partial
distillation reduces network tra�c compared with full distillation.
Against naive o�oading, which sends the teacher prediction to the
client, ShadowTutor reduces the amount of data transfer by 13.77%
per key frame, because the size of the student is even smaller than
one video frame.

Table 5 summarizes the proportion of key frames and the actual
network tra�c in Mbps. The smaller the key frame proportion,
the less frequent the network communication. Partial distillation
generally performs better than full distillation, and strictly better

Table 5: Key frames ratio (%) and network tra�c (Mbps)

Camera Scene Key frame ratio Network tra�c

Partial Full Naive Partial Naive

�xed animals 4.73 4.60 100.0 7.51 58.51
�xed people 1.96 2.42 100.0 3.14 58.51
�xed street 7.78 7.43 100.0 12.27 58.51
moving animals 2.55 2.29 100.0 4.06 58.51
moving people 3.45 4.12 100.0 5.51 58.51
moving street 11.70 11.48 100.0 18.19 58.51
egocentric people 5.46 9.75 100.0 8.70 58.51

average 5.38 6.01 100.0 6.19 58.51

Table 6:Mean IoU of various settings.Wild = pre-trained stu-
dent on its own, P = partial distillation, F = full distillation,
digit (1 or 8) = number of delayed frames before receiving
updated student weights.

Camera Scene Wild P-1 P-8 F-1 Naive

�xed animals 14.34 74.31 73.27 74.47 100.0
�xed people 13.91 81.69 81.39 81.36 100.0
�xed street 17.28 70.26 69.01 63.60 100.0
moving animals 22.31 74.94 73.80 75.21 100.0
moving people 17.62 74.82 74.06 75.55 100.0
moving street 18.65 60.48 58.61 52.94 100.0
egocentric people 14.80 70.42 68.87 61.41 100.0

average 16.99 72.42 71.29 69.22 100.0

than naive o�oading. Especially, for the �xed-people category, the
number of network communications is only 1.96% compared with
the naive o�oading scheme, yielding a surprising 98% reduction.

The e�ects of the two reductions are multiplicative. Thus, com-
pared with naive o�oading, ShadowTutor reduces the amount of
network transfer per frame by 98.3% at most, and 95.3% on average.

On the other hand, the reduction in network tra�c (amount of
networked data per unit time) is coupled with the improvement in
throughput, showing a reduction of 89.4% on average. We especially
note that network tra�c has improved even if throughput had a
threefold improvement.

Finally, with the current con�guration, the network tra�c bounds
computed with equations 8 and 12 are 2.53 Mbps and 21.2 Mbps, re-
spectively. From table 5, all network tra�c values obey the bounds,
and the bounds are quite tight, proving their usefulness.

6.3 Accuracy
Table 6 shows the mean Intersection over Union (mIoU) of various
experiment settings. The mIoU of every frame (key and non-key
frames) is averaged to show that the student can leverage temporal
coherence to accurately perform inference on non-key frames. Note
that all accuracy values are evaluated against the teacher (Mask
R-CNN) output, which is why the naive approach always achieves
perfect accuracy. However, we emphasize that the LVS dataset has
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Table 2: Execution time and mean number of distillation
steps

Distillation Partial Full

One step (ms) 13 18
Mean # of steps 3.83 4.44

Table 3: Frames processed per second (FPS) and execution
time (s) in parenthesis

Camera Scene Partial Full Naive

�xed animals 6.55(762.5) 6.21(804.5) 2.09(2391.3)
�xed people 6.60(757.4) 6.43(777.0) 2.09(2391.3)
�xed street 6.50(768.8) 5.95(840.5) 2.09(2391.3)
moving animals 6.57(760.5) 6.27(796.5) 2.09(2391.3)
moving people 6.59(758.5) 6.36(785.8) 2.09(2391.3)
moving street 6.41(780.2) 5.55(901.0) 2.09(2391.3)
egocentric people 6.57(760.5) 5.89(848.5) 2.09(2391.3)

average 6.54(764.1) 6.08(822.0) 2.09(2391.3)

Table 4: Data transmitted on each key frame (MB).

Direction Partial Full Naive

To Server 2.637 2.637 2.637
To Client 0.395 1.846 0.879

Total 3.032 4.483 3.516

training steps is limited, it is quicker to exploit a �xed distribution
of features than to explore for better ones.

Table 3 lists the actual throughput of the system (frames pro-
cessed per second) and the total execution time. As expected, partial
distillation outperforms full distillation in every category. Moreover,
ShadowTutor shows an improvement greater than 3x over naive
o�oading. This is especially because ShadowTutor only communi-
cates with the server on key frames, and thus drastically reduces
the latency for networking.

6.2 Network Tra�c
We investigate the reduction of network tra�c in terms of the
amount of data transfer per key frame and the ratio of key frames
to all frames.

Table 4 shows the amount of data transfer (in MB) per key frame.
Since it su�ces to send only the updated part of the student, partial
distillation reduces network tra�c compared with full distillation.
Against naive o�oading, which sends the teacher prediction to the
client, ShadowTutor reduces the amount of data transfer by 13.77%
per key frame, because the size of the student is even smaller than
one video frame.

Table 5 summarizes the proportion of key frames and the actual
network tra�c in Mbps. The smaller the key frame proportion,
the less frequent the network communication. Partial distillation
generally performs better than full distillation, and strictly better

Table 5: Key frames ratio (%) and network tra�c (Mbps)

Camera Scene Key frame ratio Network tra�c

Partial Full Naive Partial Naive

�xed animals 4.73 4.60 100.0 7.51 58.51
�xed people 1.96 2.42 100.0 3.14 58.51
�xed street 7.78 7.43 100.0 12.27 58.51
moving animals 2.55 2.29 100.0 4.06 58.51
moving people 3.45 4.12 100.0 5.51 58.51
moving street 11.70 11.48 100.0 18.19 58.51
egocentric people 5.46 9.75 100.0 8.70 58.51

average 5.38 6.01 100.0 6.19 58.51

Table 6:Mean IoU of various settings.Wild = pre-trained stu-
dent on its own, P = partial distillation, F = full distillation,
digit (1 or 8) = number of delayed frames before receiving
updated student weights.

Camera Scene Wild P-1 P-8 F-1 Naive

�xed animals 14.34 74.31 73.27 74.47 100.0
�xed people 13.91 81.69 81.39 81.36 100.0
�xed street 17.28 70.26 69.01 63.60 100.0
moving animals 22.31 74.94 73.80 75.21 100.0
moving people 17.62 74.82 74.06 75.55 100.0
moving street 18.65 60.48 58.61 52.94 100.0
egocentric people 14.80 70.42 68.87 61.41 100.0

average 16.99 72.42 71.29 69.22 100.0

than naive o�oading. Especially, for the �xed-people category, the
number of network communications is only 1.96% compared with
the naive o�oading scheme, yielding a surprising 98% reduction.

The e�ects of the two reductions are multiplicative. Thus, com-
pared with naive o�oading, ShadowTutor reduces the amount of
network transfer per frame by 98.3% at most, and 95.3% on average.

On the other hand, the reduction in network tra�c (amount of
networked data per unit time) is coupled with the improvement in
throughput, showing a reduction of 89.4% on average. We especially
note that network tra�c has improved even if throughput had a
threefold improvement.

Finally, with the current con�guration, the network tra�c bounds
computed with equations 8 and 12 are 2.53 Mbps and 21.2 Mbps, re-
spectively. From table 5, all network tra�c values obey the bounds,
and the bounds are quite tight, proving their usefulness.

6.3 Accuracy
Table 6 shows the mean Intersection over Union (mIoU) of various
experiment settings. The mIoU of every frame (key and non-key
frames) is averaged to show that the student can leverage temporal
coherence to accurately perform inference on non-key frames. Note
that all accuracy values are evaluated against the teacher (Mask
R-CNN) output, which is why the naive approach always achieves
perfect accuracy. However, we emphasize that the LVS dataset has

Network Data Transfer: 95% reduction
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Table 2: Execution time and mean number of distillation
steps

Distillation Partial Full

One step (ms) 13 18
Mean # of steps 3.83 4.44

Table 3: Frames processed per second (FPS) and execution
time (s) in parenthesis

Camera Scene Partial Full Naive

�xed animals 6.55(762.5) 6.21(804.5) 2.09(2391.3)
�xed people 6.60(757.4) 6.43(777.0) 2.09(2391.3)
�xed street 6.50(768.8) 5.95(840.5) 2.09(2391.3)
moving animals 6.57(760.5) 6.27(796.5) 2.09(2391.3)
moving people 6.59(758.5) 6.36(785.8) 2.09(2391.3)
moving street 6.41(780.2) 5.55(901.0) 2.09(2391.3)
egocentric people 6.57(760.5) 5.89(848.5) 2.09(2391.3)

average 6.54(764.1) 6.08(822.0) 2.09(2391.3)

Table 4: Data transmitted on each key frame (MB).

Direction Partial Full Naive

To Server 2.637 2.637 2.637
To Client 0.395 1.846 0.879

Total 3.032 4.483 3.516

training steps is limited, it is quicker to exploit a �xed distribution
of features than to explore for better ones.

Table 3 lists the actual throughput of the system (frames pro-
cessed per second) and the total execution time. As expected, partial
distillation outperforms full distillation in every category. Moreover,
ShadowTutor shows an improvement greater than 3x over naive
o�oading. This is especially because ShadowTutor only communi-
cates with the server on key frames, and thus drastically reduces
the latency for networking.

6.2 Network Tra�c
We investigate the reduction of network tra�c in terms of the
amount of data transfer per key frame and the ratio of key frames
to all frames.

Table 4 shows the amount of data transfer (in MB) per key frame.
Since it su�ces to send only the updated part of the student, partial
distillation reduces network tra�c compared with full distillation.
Against naive o�oading, which sends the teacher prediction to the
client, ShadowTutor reduces the amount of data transfer by 13.77%
per key frame, because the size of the student is even smaller than
one video frame.

Table 5 summarizes the proportion of key frames and the actual
network tra�c in Mbps. The smaller the key frame proportion,
the less frequent the network communication. Partial distillation
generally performs better than full distillation, and strictly better

Table 5: Key frames ratio (%) and network tra�c (Mbps)

Camera Scene Key frame ratio Network tra�c

Partial Full Naive Partial Naive

�xed animals 4.73 4.60 100.0 7.51 58.51
�xed people 1.96 2.42 100.0 3.14 58.51
�xed street 7.78 7.43 100.0 12.27 58.51
moving animals 2.55 2.29 100.0 4.06 58.51
moving people 3.45 4.12 100.0 5.51 58.51
moving street 11.70 11.48 100.0 18.19 58.51
egocentric people 5.46 9.75 100.0 8.70 58.51

average 5.38 6.01 100.0 6.19 58.51

Table 6:Mean IoU of various settings.Wild = pre-trained stu-
dent on its own, P = partial distillation, F = full distillation,
digit (1 or 8) = number of delayed frames before receiving
updated student weights.

Camera Scene Wild P-1 P-8 F-1 Naive

�xed animals 14.34 74.31 73.27 74.47 100.0
�xed people 13.91 81.69 81.39 81.36 100.0
�xed street 17.28 70.26 69.01 63.60 100.0
moving animals 22.31 74.94 73.80 75.21 100.0
moving people 17.62 74.82 74.06 75.55 100.0
moving street 18.65 60.48 58.61 52.94 100.0
egocentric people 14.80 70.42 68.87 61.41 100.0

average 16.99 72.42 71.29 69.22 100.0

than naive o�oading. Especially, for the �xed-people category, the
number of network communications is only 1.96% compared with
the naive o�oading scheme, yielding a surprising 98% reduction.

The e�ects of the two reductions are multiplicative. Thus, com-
pared with naive o�oading, ShadowTutor reduces the amount of
network transfer per frame by 98.3% at most, and 95.3% on average.

On the other hand, the reduction in network tra�c (amount of
networked data per unit time) is coupled with the improvement in
throughput, showing a reduction of 89.4% on average. We especially
note that network tra�c has improved even if throughput had a
threefold improvement.

Finally, with the current con�guration, the network tra�c bounds
computed with equations 8 and 12 are 2.53 Mbps and 21.2 Mbps, re-
spectively. From table 5, all network tra�c values obey the bounds,
and the bounds are quite tight, proving their usefulness.

6.3 Accuracy
Table 6 shows the mean Intersection over Union (mIoU) of various
experiment settings. The mIoU of every frame (key and non-key
frames) is averaged to show that the student can leverage temporal
coherence to accurately perform inference on non-key frames. Note
that all accuracy values are evaluated against the teacher (Mask
R-CNN) output, which is why the naive approach always achieves
perfect accuracy. However, we emphasize that the LVS dataset has
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Figure 4: Network bandwidth and system throughput

been labelled with the Mask R-CNN. Thus, in our case, we are
measuring the accuracy against the label in e�ect.

First, to show the need for shadow education, we run the pre-
trained student on every frame without any supervision from the
teacher (denoted as Wild). As expected, its accuracy su�ers greatly,
approaching the accuracy of random guessing. This is because the
student is too small to generalize to all kinds of scenes.

Next, we show the e�ect of shadow education. Recall that the
mobile device receives the updated weights in a non-blocking fash-
ion, mitigating the e�ect of delays in network transfer. Thus, we
measure accuracy when there is the least delay (1 frame, P-1) and
the most (8 frames, P-8). ShadowTutor approaches the accuracy of
the teacher with a student 100x smaller, proving the e�ectiveness of
knowledge distillation. Moreover, asynchronous inference hardly
hurts accuracy, showing that slightly outdated weights are still
useful due to temporal coherence.

Lastly, we compare partial distillation (P-1) and full distillation
(F-1). Overall, partial distillation is more accurate. When partial
distillation is better, it outperforms full distillation signi�cantly,
thereby providing an overall stable level of accuracy.

6.4 Robustness to Network Conditions
Fluctuations often happen during network communications be-
tween the cloud data center and the client. Thus, in this experiment,
we investigate the e�ect of reduced available network bandwidth.
Speci�cally, we set the bandwidth of the system to 90, 80, 60, 40,
20, 12, and 8 Mbps, and examine the throughput of the system.

Figure 4 shows the change in throughput against network band-
width for ShadowTutor and naive o�oading. For ShadowTutor, we
selected �ve video streams with di�erent key frame proportions;

Table 7:Mean IoU and key frame ratio for 7 FPS videos. Digit
(1 or 8) = number of frame delays before receiving updated
student weights. Key frame proportion is in %.

Camera Scene Partial-1 Partial-8 Key frame

�xed animals 62.72 61.86 6.59
�xed people 80.44 80.08 1.97
�xed street 63.78 62.51 8.9
moving animals 68.63 66.78 4.84
moving people 73.66 72.91 4.15
moving street 48.92 46.99 12.34
egocentric people 67.57 66.09 5.44

average 66.53 65.31 6.32

softball has the least key frames (1.72%), and southbeach (street
CCTV) has the most (12.4%).

The throughput of naive o�oading decreases immediately in
the face of low network bandwidth because it has no mechanism
to mitigate the increase in network latency. On the contrary, the
throughput of ShadowTutor remains remarkably stable until 40
Mbps, which is half of the original bandwidth. For videos that
have a small proportion of key frames, throughput is retained even
until 20 Mbps, since network latency takes up only a small frac-
tion among all latency components. Videos with more key frames
lose throughput more quickly, but only by 3x even if the network
bandwidth is 10x narrower.

The region colored in gray represent the throughput bounds
computed with equations 14 and 15. All throughput values obey
the bounds. Especially, for low bandwidth settings, network latency
dominates among all latency components, reducing the variation in
throughput brought about by the degree of concurrency supported
by the mobile device.

ShadowTutor’s robustness to the reduction in network band-
width comes from asynchronous inference. In e�ect, as long as the
network latency is shorter than the inference latency of MIN_STRIDE
many frames, ShadowTutor can hide the network latency almost
completely. However, when the network latency is longer, the re-
duction in network bandwidth begins to take a more direct impact
to the system’s throughput since asynchronous inference can no
longer serve as a bu�er.

6.5 Feasibility of Real-Time Inference
Finding promise from 25–30 FPS videos, we test ShadowTutor with
videos with less temporal coherence. Speci�cally, for every video,
we re-sample the frames such that all videos have an FPS of 7.
Thus, by matching the input video’s frame rate with ShadowTutor’s
throughput, we simulate the real-time inference of frames fetched
from the mobile device’s camera.

Table 7 shows the mean IoU and key frame proportion of the
�rst 5000 frames of the re-sampled videos. Surprisingly, even if the
time distance between adjacent frames is elongated by four times,
ShadowTutor yields an average accuracy drop of less than 6%p and
key frame proportion increase of less than 1%p. Therefore, this
shows the feasibility of applying ShadowTutor to real-time infer-
ence applications. With optimized students, e.g. those that utilize
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been labelled with the Mask R-CNN. Thus, in our case, we are
measuring the accuracy against the label in e�ect.

First, to show the need for shadow education, we run the pre-
trained student on every frame without any supervision from the
teacher (denoted as Wild). As expected, its accuracy su�ers greatly,
approaching the accuracy of random guessing. This is because the
student is too small to generalize to all kinds of scenes.

Next, we show the e�ect of shadow education. Recall that the
mobile device receives the updated weights in a non-blocking fash-
ion, mitigating the e�ect of delays in network transfer. Thus, we
measure accuracy when there is the least delay (1 frame, P-1) and
the most (8 frames, P-8). ShadowTutor approaches the accuracy of
the teacher with a student 100x smaller, proving the e�ectiveness of
knowledge distillation. Moreover, asynchronous inference hardly
hurts accuracy, showing that slightly outdated weights are still
useful due to temporal coherence.

Lastly, we compare partial distillation (P-1) and full distillation
(F-1). Overall, partial distillation is more accurate. When partial
distillation is better, it outperforms full distillation signi�cantly,
thereby providing an overall stable level of accuracy.

6.4 Robustness to Network Conditions
Fluctuations often happen during network communications be-
tween the cloud data center and the client. Thus, in this experiment,
we investigate the e�ect of reduced available network bandwidth.
Speci�cally, we set the bandwidth of the system to 90, 80, 60, 40,
20, 12, and 8 Mbps, and examine the throughput of the system.

Figure 4 shows the change in throughput against network band-
width for ShadowTutor and naive o�oading. For ShadowTutor, we
selected �ve video streams with di�erent key frame proportions;

Table 7:Mean IoU and key frame ratio for 7 FPS videos. Digit
(1 or 8) = number of frame delays before receiving updated
student weights. Key frame proportion is in %.

Camera Scene Partial-1 Partial-8 Key frame

�xed animals 62.72 61.86 6.59
�xed people 80.44 80.08 1.97
�xed street 63.78 62.51 8.9
moving animals 68.63 66.78 4.84
moving people 73.66 72.91 4.15
moving street 48.92 46.99 12.34
egocentric people 67.57 66.09 5.44

average 66.53 65.31 6.32

softball has the least key frames (1.72%), and southbeach (street
CCTV) has the most (12.4%).

The throughput of naive o�oading decreases immediately in
the face of low network bandwidth because it has no mechanism
to mitigate the increase in network latency. On the contrary, the
throughput of ShadowTutor remains remarkably stable until 40
Mbps, which is half of the original bandwidth. For videos that
have a small proportion of key frames, throughput is retained even
until 20 Mbps, since network latency takes up only a small frac-
tion among all latency components. Videos with more key frames
lose throughput more quickly, but only by 3x even if the network
bandwidth is 10x narrower.

The region colored in gray represent the throughput bounds
computed with equations 14 and 15. All throughput values obey
the bounds. Especially, for low bandwidth settings, network latency
dominates among all latency components, reducing the variation in
throughput brought about by the degree of concurrency supported
by the mobile device.

ShadowTutor’s robustness to the reduction in network band-
width comes from asynchronous inference. In e�ect, as long as the
network latency is shorter than the inference latency of MIN_STRIDE
many frames, ShadowTutor can hide the network latency almost
completely. However, when the network latency is longer, the re-
duction in network bandwidth begins to take a more direct impact
to the system’s throughput since asynchronous inference can no
longer serve as a bu�er.

6.5 Feasibility of Real-Time Inference
Finding promise from 25–30 FPS videos, we test ShadowTutor with
videos with less temporal coherence. Speci�cally, for every video,
we re-sample the frames such that all videos have an FPS of 7.
Thus, by matching the input video’s frame rate with ShadowTutor’s
throughput, we simulate the real-time inference of frames fetched
from the mobile device’s camera.

Table 7 shows the mean IoU and key frame proportion of the
�rst 5000 frames of the re-sampled videos. Surprisingly, even if the
time distance between adjacent frames is elongated by four times,
ShadowTutor yields an average accuracy drop of less than 6%p and
key frame proportion increase of less than 1%p. Therefore, this
shows the feasibility of applying ShadowTutor to real-time infer-
ence applications. With optimized students, e.g. those that utilize
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Can we enjoy the best of both worlds?
Little network traffic and server load 
The performance and generality of a large model
Model adaptation to current data
Computation power of mobile devices is reasonably leveraged

Good throughput
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Conclusion


