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2023
New technology is driving record demand but
power constraints are inhibiting growth
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Our Goal
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Let’s optimize the energy consumption of large model training
• without changing what is being computed
• on the same GPU hardware
• without slowdown



Energy Bloat

Not all Joules are equal
• A portion of energy doesn’t contribute to throughput
• Removing such energy bloat doesn’t affect throughput

Two sources of energy bloat in large model training
• Intrinsic to one training pipeline
• Extrinsic to one training pipeline
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Intrinsic Energy Bloat

One training iteration with 4 pipeline stages and 8 microbatches (1F1B schedule).
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Drawn to scale for GPT-3 1.3B on NVIDIA A100 GPUs.
One training iteration with 4 pipeline stages and 8 microbatches (1F1B schedule).



Drawn to scale for GPT-3 1.3B on NVIDIA A100 GPUs.
One training iteration with 4 pipeline stages and 8 microbatches (1F1B schedule).
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One training iteration of GPT-3 1.3B with four pipeline stages
and eight microbatches on NVIDIA A100 GPUs, drawn to scale.
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Iteration Time-Energy Frontier
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Iteration Time (seconds)

Iteration Energy
(Joules)

with maximum speed/energy
Running all computations

Intrinsic bloat reduction



Iteration Time-Energy Frontier
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Iteration Time (seconds)

Iteration Energy
(Joules)

Intrinsic + extrinsic bloat reduction

Straggler!
Optimized



Iteration Time-Energy Frontier
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Iteration Time (seconds)

Iteration Energy
(Joules)

Intrinsic + extrinsic bloat reduction

Straggler!
Optimized

NP-Hard



An Iterative Solution
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Iteration Time (seconds)

Iteration Energy
(Joules) Reduce iteration time by unit time

while minimizing energy increase

Optimized
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Iteration Time (seconds)

Iteration Energy
(Joules) Reduce iteration time by unit time

while minimizing energy increase

Optimized



Allocating Energy with Graph Cut
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Only leave critical edges (computations)

Forward Backward

* Numbers are execution latencies
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Any s-t cut represents a way to
reduce the DAG’s end-to-end execution time by 1

Forward Backward

* Numbers are execution latencies
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Any s-t cut represents a way to
reduce the DAG’s end-to-end execution time by 1

Forward Backward

* Numbers are execution latencies
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Any s-t cut represents a way to
reduce the DAG’s end-to-end execution time by 1

Forward Backward

* Numbers are execution latencies



Allocating Energy with Graph Cut

2

4 2
2 2 4 7 2 3 

5 2 6 4 3 4 
2

5

3

6

7

3

3s t

23Finding the Time-Energy Frontier |

Any s-t cut represents a way to
reduce the DAG’s end-to-end execution time by 1

Forward Backward

* Numbers are execution latencies
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Any s-t cut represents a way to
reduce the DAG’s end-to-end execution time by 1

Forward Backward

* Numbers are execution latencies
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Any s-t cut represents a way to
reduce the DAG’s end-to-end execution time by 1

Forward Backward

* Numbers are execution latencies
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Any s-t cut represents a way to
reduce the DAG’s end-to-end execution time by 1

Forward Backward

* Numbers are execution latencies



Allocating Energy with Graph Cut
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Edge flow capacity = Extra energy needed to speed up by 1

Finding the minimum cut ó Minimizing energy increase

Forward Backward

* Numbers are execution latencies



Evaluation

Setup and workloads
• Measurement on A100 and A40 GPUs and large-scale emulation
• GPT-3, BLOOM, BERT,  T5, Wide-ResNet
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Baselines
• Zeus (NSDI ’23)
• EnvPipe (ATC ’23)

Questions
• How much energy bloat reduction is possible?
• What does the time-energy frontier look like?



Significant Energy Bloat Reduction
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Experiment results on four A100 and eight A40 GPUs.
A100 savings are generally smaller because they are

PCIe models with lower TDP and small dynamic clock speed range.

13% to 29% energy 
reduction on real GPUs

Model
Energy Savings (%)

NVIDIA A100 NVIDIA A40

GPT-3 15.5 26.0

Bloom 15.6 26.4

BERT 16.9 24.1

T5 18.0 28.5

Wide-ResNet
(scaled up) 12.7 26.3



Significant Energy Bloat Reduction
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Intrinsic bloat reduction Extrinsic bloat reduction

Emulation results for training each model on 1,024 A100 SXM GPUs.
Extrinsic energy bloat reduction is when the straggler pipeline is 20% slower.
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Ours EnvPipe Ours EnvPipe



Intrinsic + extrinsic energy bloat

Intrinsic energy bloat

Original iteration time

Pushing the Frontier
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Zeus* Ours
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Experiment results on NVIDIA A40 GPUs, training GPT-3 6.7B.
* ZeusGlobal baseline derived from Zeus, as Zeus does not support large model training.



Contributions
• Not all Joules contribute to E2E throughput
• Some are energy bloat!

• An alternative framing for execution planning and stragglers
• They can be cast into energy savings opportunities!

• Energy as a software-manageable ML systems resource
• Carefully controlled and allocated, like time!
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