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Why Al Energy?

Energy demand of Al

Luckerberg's Meta Is Spending Billions to
Buy 350,000 Nvidia H100 GPUs

In total, Meta will have the compute power equivalent to 600,000 Nvidia HI00 GPUs to help it
develop next-generation Al, says CEO Mark Zuckerberg.
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(David Paul Morris/Bloomberg via Getty Images)
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Why Al Energy!?

Energy demand of Al
Datacenter power delivery

Global Data
Center Trends

2023

New technology is driving record demand but
power constraints are inhibiting growth
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Why Al Energy!?

Energy demand of Al Global Data
Center Trends

2024

Datacenter power delivery

Limited power availability drives
rental rate growth worldwide
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Why Al Energy?

Energy demand of Al

Datacenter power delivery

Readout of White House Roundtable
on U.S. Leadership in AI Infrastructure

m » BRIEFING ROOM » STATEMENTS AND RELEASES

Today, as part of the Biden-Harris Administration’s comprehensive strategy
for responsible innovation, the White House convened leaders from
hyperscalers, artificial intelligence (AI) companies, datacenter operators, and
utility companies to discuss steps to ensure the United States continues to
lead the world in Al Participants considered strategies to meet clean energy,
permitting, and workforce requirements for developing large-scale AT
datacenters and power infrastructure needed for advanced AI operations in
the United States.
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Our Goal

Let's optimize the energy consumption of large model training
* without changing what Is being computed
* on the same GPU hardware
* without slowdown
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Energy Bloat

Not all Joules are equal
* A portion of energy to throughput
* Removing such doesn't affect throughput

Two sources of energy bloat in large model training
. to one training pipeline
. to one training pipeline
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Intrinsic Energy Bloat
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One training iteration with 4 pipeline stages and 8 microbatches (I1FIB schedule).
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Intrinsic Energy Bloat
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One training iteration with 4 pipeline stages and 8 microbatches (I1FIB schedule).
Drawn to scale for GPT-3 1.3B on NVIDIA A100 GPUs.
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Intrinsic Energy Bloat
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One training iteration with 4 pipeline stages and 8 microbatches (I1FIB schedule).
Drawn to scale for GPT-3 1.3B on NVIDIA A100 GPUs.
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Intrinsic Energy Bloat
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One training iteration of GPT-3 |.3B with four pipeline stages
and eight microbatches on NVIDIA A100 GPUs, drawn to scale.
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Extrinsic Energy Bloat
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Extrinsic Energy Bloat
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Stragglers in literature: MegaScale (NSDI '24), SuperBench (ATC '24), Llama 3 (Meta), Falcon (Alibaba) Two Types of Energy Bloat | 14



Extrinsic Energy Bloat

o\ 150 W 300 W
— ' |
FI F B [F[ | BIF| [ B |F||BI|F|]| B B
b oalin | GPU T 1] 3L 2 (4l | 3 (5| 4 |6] | S 6
PEIne FI B [F| B |F| B |F[ B [F| B |F| B %
o 2] 2 |3 3 (4] 4 [5] 5 |é]| ¢ 3
s| Povvercappmg
= = IFllr s Tl s 7 & 71 & = 18| ¢ Thermal throttling
S aline GPUT 1112 3 2 4] 3 (5] 4 [eff S 6 || * Attention masks
IPEINE ;
? GPU 2 F{ B [(F| B |F[ B [(F] B |F[ B [F| B * Expert imbalance
{2 2 |3 3 |4 4 |5] 5 [6] ¢ .
0.0 Time (s)

Stragglers in literature: MegaScale (NSDI '24), SuperBench (ATC '24), Llama 3 (Meta), Falcon (Alibaba) Two Types of Energy Bloat | 15



[teration Time-Energy Frontier

: Running all computa’uons
¢/ with maximum speed/energy

+ > Intrinsic bloat reduction
teration Energy 7

(Joules)

[teration Time (seconds)
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[teration Time-Energy Frontier

Straggler!

@ Optimized

[teration Energy ~
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> | Intrinsic + extrinsic bloat reduction
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An lterative Solution

[teration Energy ~
(Joules)

Optimized

Reduce rteration time by unit time
while minimizing energy increase

/]

[teration Time (seconds)
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An lterative Solution
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Allocating Energy with Graph Cut

Forward —1

* Numbers are execution latencies
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Backward

Only leave critical edges (computations)
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Allocating Energy with Graph Cut

/T Forward —1 Backward
* Numbers are execution latencies
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Allocating Energy with Graph Cut

/T Forward —1 Backward
* Numbers are execution latencies
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Any s-t cut represents a way to
reduce the DAG'’s end-to-end execution time by |
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Allocating Energy with Graph Cut
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Allocating Energy with Graph Cut

Forward —1

* Numbers are execution latencies

Backward
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Edge flow capacity = Extra energy needed to speed up by |

U:inding the minimum cut <> Minimizing energy increase
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Evaluation

Questions
* How much energy bloat reduction is possible?
*  What does the time-energy frontier look like!

Setup and workloads
* Measurement on A100 and A40 GPUs and large-scale emulation

* GPI-3,BLOOM, BERT, T5,Wide-ResNet

Baselines
* Zeus (NSDI 23)

* EnvPipe (ATC 23)
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Significant Energy Bloat Reduction

Energy Savings (%)

NVIDIA A100

NVIDIA A40

GPT-3 5.5 26.0
Bloom 5.6 264 energy
reduction on real GPUs
BERT 16.9 24.]
TS 18.0 285
Wide-ResNet
(scaled up) 2.7 263

Experiment results on four A100 and eight A40 GPUs.
A100 savings are generally smaller because they are
PCle models with lower TDP and small dynamic clock speed range.
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Significant Energy Bloat Reduction

B |ntrinsic bloat reduction Extrinsic bloat reduction
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Ours EnvPipe Ours EnvPipe
GPT-3 I75B  Bloom |76B

Emulation results for training each model on 1,024 A100 SXM GPUs.
Extrinsic energy bloat reduction is when the straggler pipeline is 20% slower.
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Pushing the Frontier

—— Zeus" Ours

Original iteration time
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Experiment results on NVIDIA A40 GPUs, training GPT-3 6.7B.

" ZeusGlobal baseline derived from Zeus, as Zeus does not support large model training.
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Contributions

* Not all Joules contribute to E2E throughput
* Some are

* An alternative framing for execution planning and stragglers
* They can be

* Energy as a software-manageable ML systems resource
* Carefully

Contributions | 32



Towards an Energy-Optimal Al Stack

The ML.ENERGY Initiative
https://ml.energy

/%EUS PhD Students
= Jae-Won Chung Insu Jang Jiachen Liu Dr. Jie You

Team
Undergraduate & Master’s Students
Yile Gu Zhiyu Wu Parth Raut Sharon Han
Luoxi Meng Yong Seung Lee Wonbin Jin Oh Jun Kweon
Zhenning Yang Yuxuan Xia Daniel Hou
M L E N E RGY Tom Anderson (UW) Mosharaf Chowdhury (UMich)
¢ Adam Belay (MIT) Asaf Cidon (Columbia)
Core Pls Beidi Chen (CMU) Simon Peter (UW)
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